LCLS-II – Project and Engineering Challenges

MEDSI 2014, Melbourne

Nicholas M. Kelez 10/21/2014

Outline

- LCLS-II Project Overview
- Accelerator Components and Engineering Challenges
- Future Outlook

BESAC Subcommittee Report: July 25, 2013

- Committee <u>report</u> & <u>presentation</u> to BESAC:
 - "It is considered essential that the new light source have the pulse characteristics and high repetition rate necessary to carry out a broad range of coherent "pump probe" experiments, in addition to a sufficiently broad photon energy range (at least ~0.2 keV to ~5.0 keV)"
 - "It appears that such a new light source that would meet the challenges of the future by delivering a capability that is beyond that of any existing or planned facility worldwide is now within reach. However, no proposal presented to the BESAC light source sub-committee meets these criteria."
 - "The panel recommends that a decision to proceed toward a new light source with revolutionary capabilities be accompanied by a robust R&D effort in accelerator and detector technology that will maximize the cost-efficiency of the facility and fully utilize its unprecedented source characteristics."

Project Collaboration

- 50% of cryomodules: 1.3 GHz
- Cryomodules: 3.9 GHz
- Cryomodule engineering/design
- Helium distribution
- Processing for high Q (FNAL-invented gas doping)

- 50% of cryomodules: 1.3 GHz
- Cryoplant selection/design
- Processing for high Q

- Undulators
- e⁻ gun & associated injector systems

- Undulator Vacuum Chamber
- Also supports FNAL w/ SCRF cleaning facility
- Undulator R&D: vertical polarization

- R&D planning, prototype support
- processing for high-Q (high Q gas doping)
- e⁻ gun option

A New LCLS-II Project Redesigned in Response to BESAC

Accelerator	Superconducting linac: 4 GeV
Undulators in existing LCLS-I Tunnel	New variable gap (north) New variable gap (south), replaces existing fixed-gap und.
Instruments	Re-purpose existing instruments (instrument and detector upgrades needed to fully exploit)
Total Project Cost	\$965M

LCLS-II Accelerator Design - Plan for rapid construction

- New linac based on 1.3 GHz SCRF with MHz beam rate
 - 1.3 GHz technology well established around the world
 - Similar to LCLS with laser heater, harmonic linearizer and dual bunch compressor (and option for third compressor at linac end)
 - Link into existing LCLS beamlines
- Dual variable gap hybrid undulators to cover energy range
 - Self-seeding in both HXR and SXR undulators with options for additional photon phase space control
- Leverage partner labs and extensive work on NGLS, NLS, EU-XFEL, ILC and LCLS-II_{Phase I} to develop conceptual design
 - Project definition occurred very rapidly (fall of 2013)

LCLS-II Accelerator Layout and Modifications

- New Injector, SCRF linac, and extension installed in Sectors 0-10
- Use existing Bypass line from Sector 10 → Beam Switch Yard (BSY)
- Re-use existing high power dump in BSY and add magnetic kicker to direct beams to dump, SXR, or HXR
- Re-use existing transfer line (LTU) to HXR; modify HXR dump
- Construct new LTU to SXR and new dump line

LCLS-II (SCRF) Baseline Parameters

SLAC

Parameter	symbol	nominal	range	units
Electron Energy	E_f	4.0	2.0 - 4.14	GeV
Bunch Charge	Q_b	100	10 - 300	рС
Bunch Repetition Rate in Linac	f_b	0.62	0 - 0.93	MHz
Average e-current in linac	I_{avg}	0.062	0.0 - 0.3	mA
Avg. e- beam power at linac end	P_{av}	0.25	0 - 1.2	MW
Norm. rms slice emittance at undulator	$\gamma \mathcal{E}_{\perp ext{-}s}$	0.45	0.2 - 0.7	μ m
Final peak current (at undulator)	I_{pk}	1000	500 - 1500	Α
Final slice E-spread (rms, w/heater)	$\sigma_{\! extsf{Es}}$	500	125 - 1500	keV
RF frequency	f_{RF}	1.3	-	GHz
Avg. CW RF gradient (powered cavities)	E_{acc}	16	-	MV/m
Avg. Cavity Q0	Q0	2.7e10	1.5 - 5e10	-
Photon energy range of SXR (SCRF)	E_{phot}	-	0.2 - 1.3	keV
Photon energy range of HXR (SCRF)	E_{phot}	-	1 - 5	keV
Photon energy range of HXR (Cu-RF)	E_{phot}	-	1 - 25	keV

LCLS-II SASE Performance: Photons/Pulse Average Brightness

Calculated X-ray pulse energies versus photon energy for the CuRF linac (blue) and the similar curve for the existing LCLS (black).

Photon energy (eV)

Performance Measure	Threshold	Objective	
Variable Gap Undulators	2 (SXR & HXR)	2 (SXR & HXR)	
Super Co	nducting Linac Based FEL Syste	em	
Super Conducting Linac Electron Beam Energy	3 GeV	≥4 GeV	
Super Conducting Linac Repetition Rate	50 kHz	1,000 kHz	
Super Conducting Linac Charge per Bunch	0.02 nC	0.1 nC	
Photon Beam Energy Range	0.25-2 keV	0.2-5 keV	
High Repetition Rate Capable End Stations	≥1	≥ 3	
FEL per-pulse intensity on-axis	10X spontaneous	>10^11 photons in 10^-3 BW	
Normal Co	onducting Linac Based FEL Syst	em	
Normal Conducting Linac Electron Beam Energy	13 GeV	15 GeV	
Normal Conducting Linac Repetition Rate	120 Hz	120 Hz	
Normal Conducting Linac Charge per Bunch	0.1 nC	0.25 nC	
Photon Beam Energy Range	1-8 keV	1-25 keV	
Low Repetition Rate Capable End Stations	≥2	≥3	
FEL per-pulse intensity on-axis	10X spontaneous @ 8 keV	>10^12 photons in 10^-3 BW @ 13 keV	

40

SASE and Seeding - Building on LCLS Experience

Cu SASE

Cu Self Seeded

High Rep Rate SASE

Self Seeded (Grating)

- Hard X-Ray Source:
 - > 1-5 keV w/ 4 GeV SC linac
 - Up to 25 keV with LCLS Cu Linac
- Soft X-Ray Source:
 - > 250 eV-1.3 keV w/ 4 GeV linac
 - ➤ 200 eV requires <4 GeV</p>

Injector Baseline Layout

- CW (up to 1 MHz), 0.4 µm emittance @100pC
- Major injector components:
 - NC 185.7 MHz RF gun
 - Cs₂Te cathode; UV/IR lasers for cathode/laser heater
 - NC 1.3 GHz buncher; two solenoids
 - SC 1.3 GHz 8-cavity CM (energy up to 100 MeV)

The LBNL VHF RF Gun

The Berkeley normal-conducting scheme satisfies and often overcomes all the X-FEL requirements.

J. Staples, F. Sannibale, S. Virostek, CBP Tech Note 366, Oct. 2006 K. Baptiste, et al, NIM A 599, 9 (2009)

Frequency (7 th 1.3 GHz sub-Harmonic)	186 MHz		
Operation mode	CW		
Gap voltage	750 kV		
Field at the cathode	19.47 MV/m		
Q ₀ (measured)	26500		
Shunt impedance	6.5 ΜΩ		
RF Power @ Q ₀	100 kW		
Peak surface field	24.1 MV/m		
Peak wall power density	25.0 W/cm ²		
Accelerating gap	4 cm		
Diameter/Length	69.4/35.0 cm		
Operating pressure	$\sim 10^{-10}$ - 10^{-9} Torr		
14 34 4 141 1 41 1			

- At the VHF frequency, the cavity structure is large enough to withstand the heat load and operate in CW mode at the required gradients.
- Also, the long λ_{RF} allows for large apertures and thus for high vacuum conductivity.
- Based on mature and reliable normal-conducting RF and mechanical technologies.

LCLS-II 1.3 GHz Cryomodule

Cryomodules similar to EuXFEL with mods for CW operation 50% production led by FERMI 50% production led by J-LAB

SCRF Linac in SLAC Tunnel

SLAC Linac Tunnel: 11 wide x 10 feet high - It will be a tight fit!

Plans for installation and servicing under development

Cryogenic Work Scope

LCLS-II Undulator Layout and Self Seeding

LCLS-II Segment and Break Section Layout.

Layout shown for two individual undulator segments and three break sections for the HXR and SXR undulator lines.

Radiation damage to magnetic material is a serious concern

- e-beam collimation and halo control is critical
- Program for monthly monitoring planned

Key Undulator Tolerances

Parameter	HXU	SXU	Unit
$\Delta K_{ m eff}/K_{ m eff}$	±2.3×10 ⁻⁴	±4.4×10 ⁻⁴	
⊿y _{align}	±80	±150	μm
∆x _{align}	±400	±400	μm
First field integral range I1Bx, I1By	±40	±40	μTm
Second field integral range I2Bx, I2By	±50	±50	μTm²
Period error (rms)	<25	<25	μm
Maximum Phase Shake	±5	±5	degXray
Integrated sextupole field component	<6.4×10 ⁻⁴	<3.4×10 ⁻⁴	mm ⁻²
Yaw error between strongbacks	±1.0	±1.0	mrad
Pitch error between strongbacks	±0.035	±0.175	mrad
Roll error between strongbacks	±1.75	±1.75	mrad
Environmental Field Error	±0.1	±0.1	G

Variable Gap Hybrid Undulators – Baseline

MEDSI 2014, Melbourne

M. Leitner, S. Marks

LCLS-II Undulator R&D

Two concurrent undulator R&D programs being pursued:

- Superconducting undulator (SCU) combined Argonne/Berkeley effort
- Horizontal gap vertically polarizing undulator (VPU) at Argonne

Argonne 0.8-meter VPU test segment

Plan to have a 3 meter prototype in fall 2014

E. Gluskin, S. Prestemon, et al

HGVP undulator prototype

Full scale prototype with compensated beam displacement

Future Outlook - Facility Expansion Options

SLAC has extensive infrastructure that will allow expansion

- New tunnels are possible north and south of existing LCLS tunnel (complete design for LCLS-II_{Phase I}) and could be optimized for long, high pulse energy, hard X-ray FEL's
- Original research halls: ESA and ESB suitable for shorter, soft X-ray FEL's should they be developed

Acknowledgements

Galayda, T. Raubenheimer, H.D.

Nuhn, T. Peterson, D. Cocco

